
Journal of Sound and Vibration (1997) 199(1), 107–123

ADAPTIVE CONTROL FOR A MECHANICAL
SYSTEM WITH OSCILLATION DISTURBANCE

S.-J. H  B.-T. S

Department of Mechanical Engineering, National Taiwan Institute of Technology, Taipei,
Taiwan 10672, Republic of China

(Received 26 September 1995, and in final form 21 June 1996)

A two-stage spring–lumped mass system was designed and built to investigate the
suppression of vibration amplitude and the coupling tracking control problems.
Disregarding the non-linear factors and unknown parameters, the system mathematical
model could be formulated by using the state variable technique. A corresponding
observable discrete time model was identified from a modified recursive least squares
method based on the input and output data of this system. Then a robust multi-variable
adaptive control strategy with pole assignment structure was proposed to control this
mechanical system. Experiments were performed to evaluate the feasibility of this active
vibration control strategy and the influence of the parameters estimator on the control
performance. The experimental results showed that this approach can effectively diminish
the amplitude of vibration and overcome the system coupling effect to obtain accurate
position tracking.
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1. INTRODUCTION

All mechanical systems are subjected to excitations that induce vibrations in the system.
In order to diminish these kinds of vibrations, vibration control has become an interesting
research topic for improving the system performance. Initially, vibration control was
sought by using passive elements such as springs and dampers. The system vibration level
was controlled by increasing the stiffness or adding damping. Rouch [1] called this kind
of arrangement using springs and dampers the ‘‘dynamic absorber’’. However, the
application of a dynamic absorber is limited to a certain range of frequencies. Hence, active
vibration control has gained significant interest.

One of the earliest steps towards active vibration control was taken to control the
relative motion between a cutting tool and a workpiece. Comstock [2, 3] actuated a cutting
tool by using a control scheme which was a function of the relative displacement between
the cutting tool and the workpiece surface. This helped to improve the stability of the
cutting process. Klein and Nachtigal [4, 5] presented theoretical and experimental results
for active control of a boring bar. Experiments were performed on a lathe equipped with
a pivoted boring bar controlled by an electrohydraulic servo system. The cutting interface
of the machine tool/workpiece was controlled by indirect actuation. Ellis and Mote [6]
designed a feedback vibration controller to control the vibration of a circular wood cutting
saw. It is clear that the effect of these three approaches is actively to change the stiffness
and damping characteristics of the system. A new approach using an active dynamic
absorber was proposed by Tewani et al. [7] actively to control a lumped mass system. The
combination of passive elements, active elements and an absorber mass was used to apply
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a controlling force on the main system such that it reduced the amplitude of vibration of
the system.

Currently, most of the control algorithms used in industry are for single-input–single-
output (SISO) systems. However, most industrial systems are multi-input–multi-output
(MIMO); for example, robots, machine tools, etc. Although many systems can be
decoupled into SISO systems in order to simplify the design and control, systems with a
complicated coupling behavior are difficult to decouple. Hence the analysis and control
of MIMO systems have become important research topics in the industrial application of
modern control algorithms.

Thompson and his co-workers [8] and Wilson et al. [9] used optimal control theory to
control an active vehicle suspension system. Hac [10] employed the stochastic optimal
control technique to investigate the suspension optimization problem of a two-degrees-of-
freedom (2-DOF) vehicle model. Usually, industrial MIMO systems have non-linear time
varying properties. In order to obtain better control performance, the gain parameters of
the controller should be tunable against the time varying behavior of the system model.
Adaptive control strategies have been widely used for this purpose. Sunwoo [11] used a
model reference adaptive control to improve the performance of the suspension system of
a two-mass quarter-car model. Sachs [12] and Karnopp and Margolis [13] proposed
adaptive solutions for vehicle suspension systems, with parameters changing with respect
to variation in the road conditions and the vehicle velocity. Hac [14] proposed an adaptive
control scheme for a 2-DOF vehicle model with active suspension.

Pole assignment self-tuning control can adjust controller gains based on parameter
variations of the identified system model in order to obtain the required dynamic response
and stability. Elliott [15] proposed a direct arbitrary adaptive pole placement method
which did not need to consider the behavior of zero cancellation. Mikles [16] combined
the concepts of feedback, feedforward and precompensation to design a multi-variable
self-tuning pole placement controller. Borrison [17] extended the minimum variance
self-tuning control strategy to control multi-variable systems with the same numbers of
inputs and outputs. Sinha [18] combined minimum variance with the decoupling concept
to design a controller for multi-variable systems. Prager [19] proposed a self-tuning
controller combined with the pole assignment method for multi-variable systems. That
strategy can handle non-minimum phase systems with better robustness.

Most of the previous research on the control of multi-variable systems has been focused
on theoretical study and computer simulation analysis. In this study, a simple MIMO
system is designed to implement and evaluate the feasibility of a self-tuning controller. This
active mechanical vibration system is shown in Figure 1. It is designed to simulate the
simplified vehicle suspension system of a quarter-car model. The system analysis and
control techniques discussed in this paper can be employed in industrial applications such
as elevators and vehicle suspension systems. The DC servo motors serve as the active
elements, which are installed on the external frame near the first and the secondary masses
in order to provide active forces. Sinusoidal forcing input is applied to the system by a
constant speed rotating wheel with an eccentric mass located on each stage.

2. THE MATHEMATICAL MODEL

A schematic diagram of the system under consideration is shown in Figure 1. The main
mass with a gear rack is attached to the ground through a spring of stiffness K1. It can
slide on a guided pillar. A DC servo motor is installed on the external frame near the gear
rack of each mass to control the motion of each stage through a rack-and-pinion gearing
transmission system. A secondary mass is connected to the main system through a spring
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with stiffness K2, which can slide also on the guided pillar. In addition, two wheels with
eccentric masses driven by DC servo motors are installed on the main and the secondary
masses to provide disturbance forces. Therefore, this system has four voltage control inputs
of DC motors and four encoders to provide position outputs. In this study, the vibration
system is considered as a two-input–two-output system with two internal excitation
sources. Disregarding the non-linearities of the buckling deformation of the unguided
spring and saturation of the control voltage, the dynamic equations of this MIMO system
can be derived from Newton’s second law as
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where V1 =M1 − b1/o and V2 =M2 − b2/o, and x1, x3 and x2, x4 are the displacements and
velocities of the main and the secondary masses, respectively. M1 and M2 are the masses

Figure 1. The schematic of the multi-variable vibration system.
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of the main and the secondary stage, respectively. B1 and B2 are the damping coefficients
of the main system and the secondary system sliding on the guide respectively. The inputs
u1 and u2 are DC servo motor voltages. bi , i=1, 2, are constants which are functions of
the gear radius, inertia and damping coefficient of the DC motor. The constant o depends
on the gear radius, the resistance, the damping coefficient and the torque constant of the
DC motor. ud1 and ud2 are the disturbance forces applied to the main and the secondary
systems respectively. The sinusoidal excitation forces are functions of the eccentric mass
and the control voltage of the driving motor.

The above equation can be rewritten in matrix form as

X� =A0X+B0U+ n. (2)

Since some of the physical parameters in equation (1) are unknown and are difficult to
estimate, this model cannot be used to design a controller or evaluate dynamic
performance. In addition, the DC motors used in this system have position encoders only,
without tachometer feedback. Hence, two position outputs only of the four states of this
system are observed. For digital control implementation, an observable state space form
with specified position feedback variables is chosen as a discrete time model to facilitate
state estimation via an identification technique.

This mechanical vibration system is a coupled fourth order system with two position
outputs and two control inputs. The interacting effect between both stages is due to the
output coupling. Disregarding the non-linear behavior of the spring buckling deformation
and control voltage saturation and the disturbance effect of sinusoidal excitation, one of
the appropriate difference equations of this system was selected as

A(q−1)Y(k)=B(q−1)U(k) (3)

where q−1 is the shifting operator and

A(q−1)=$1+ a11q−1 + a12q−2

a31q−1 + a32q−2

a21q−1 + a22q−2

1+ a41q−1 + a42q−2% ,

B(q−1)=$b11q−1 + b12q−2

b31q−1 + b32q−2

b21q−1 + b22q−2

b41q−1 + b42q−2% .

The above equation can be rewritten as the autoregressive and moving-average (ARMA)
model form

Y(k)= u(k−1)C(k),

CT(k)= [−y1(k−1) −y1(k−2) −y2(k−1) −y2(k−2) u1(k−1)

u1(k−2) u2(k−1) u2(k−2)]

u(k−1)=$u1(k−1)
u2(k−1)%=$a11 a12 a21 a22 b11 b12 b21 b22

a31 a32 a41 a42 b31 b32 b41 b42% . (4)

Least squares with a forgetting factor is a popular system identification algorithm which
has good parameter convergence and is suitable for on-line parameter estimation.
However, using this method it is possible to introduce output bursting behavior in the
event of its being used in set point tracking control. Since the estimation process for a long
period set point regulation does not have enough new input information, the adaptivity
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of an estimator without persistent excitation will deteriorate. That will cause an increase
in the projection operator P(t) and induce system uncertainty. Then the identified system
parameters will vary violently once a new command input appears [20]. Therefore, the
system output may experience bursting phenomena. The following methods are proposed
to take care of this problem. One approach is to control the variation of the projection
operator by limiting its value in a bounded range [21, 22]. The other approach is to employ
a variable forgetting factor to follow the system changes [23]. Yet another approach is to
combine both methods [24, 25]. The algorithm used in this study to identify the system
time varying parameters ui(k), i=1, 2, separately is [26]

ui(k)= ui(k−1)+ a(k)Ki(k)ei(k), (5)

ei(k)= yi(k)− ŷi(k)= yi(k)− ui(k−1)C(k), (6)

Ki(k)=Pi(k−1)C(k)(I+CT(k)Pi(k−1)C(k)+ c̄CT(k)C(k))−1, (7)

P�i(k)=P�i(k−1)− a(k)Pi(k−1)C(k)[I+CT(k)Pi(k−1)C(k)

+ c̄C(k)CT(k)]−1CT(k)Pi(k−1), (8)

Pi(k)=C1
P�i(k)

tr (P�i(k))
+C2I, (9)

a(k)=6ā,
0,

if =yi(k)− ui(k−1)C(k)=q 2d,
otherwise.

(10)

where ei(k) is the output prediction error of each shaft and C(k)8×1 is the regression vector.
P(k)8×8 is the projection operator and tr (P(k)) is the trace of the projection operator. d

is the threshold value used to adjust the time varying parameter vector ui(k)1×8 when a
significant error in the system output prediction has occurred. This algorithm forces the
matrix P(k) to stay within a certain range in order to prevent divergence and violent
parameter variation due to system uncertainty. The purpose of using the variable a(k) is
to introduce a dead zone in the estimator. When the error of the output prediction is small,
or the system does not have enough persistent excitation, it can reduce the sensitivity of
the parameter estimation and eliminate the drifting phenomena of the system parameters.
Hence, it can increase the robustness of the control system with respect to sudden
variations in subsequent parameters.

The convergent speed of the system parameters is the most important factor influencing
the performance of adaptive control. In order to reduce the initial error in the transient
response, the initial values of the control system parameters are set to those obtained from
an off-line system identification method which is part of the commercial software PC
Matlab. In this study the inputs are a 25 V binary pseudo-random signal sequence. The
outputs are the linear displacement of each mass. The parameter values of this vibration
system, identified from an off-line least squares with the forgetting factor method, are listed
in Table 1. The sampling frequency is 400 Hz. Since these system parameters have a time
varying behavior and depend fully on the type and order of the selected difference ARMA
model, the parameter values of each identification have different results. The parameters
aij may have about a 30% drifting change and bij may have a drifting change between
−0·02 and 0·04 with respect to the corresponding parameters estimator and the command
input change. The output responses of the first and the secondary masses of the real system
and the identified discrete model are shown in Figure 2 for comparison. The solid line
shows the output response of the real system and the dashed line depicts the output
response of the identified model. The dynamic characteristics between them are matched
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T 1

The identified parameter values of the MIMO system

System parameters Converged value System parameters Converged value

a11 −1·9641 a31 −0·0020
a12 0·9687 a32 0·0070
a21 −0·0022 a41 −1·9683
a22 0·0020 a42 0·9812
b11 0·0134 b31 0·0008
b12 −0·0150 b32 0·0021
b21 0·0020 b41 0·0150
b22 0·0070 b42 −0·0127

very well, except that deviation occurs at the peaks of the response curves due to the
non-linear effect. Since the identified parameters cannot be ascertained as the true values
of the system parameters, the interaction level of this system cannot be explained definitely
on the basis of these data. An on-line parameter identification algorithm is required in the
control loop to take care of the system dynamic characteristics. For the self-tuning

Figure 2. The output responses of the real system and the identified MIMO model. (a) The response of the
main mass. (b) The response of the secondary mass.



      113

adaptive control employed in this study, the parameters of this MIMO vibration system
with fourth order dynamics are identified from equations (5)–(10). The system order of
each subsystem of this two-mass coupling system is reasonably specified as 2, to synthesize
a fourth order system model. From a system order point of view, a higher order model
will not result in a significant improvement in the system responses. However, the
computational cost will be increased very rapidly.

3. SELF-TUNING ADAPTIVE CONTROL

According to the system identification results, it was found that this mechanical
vibration system has non-linear coupling and time varying behavior. Since the performance
of a traditional controller depends on the accuracy of the system parameters, a self-tuning
adaptive controller is employed to take care of the system time varying change. The
identified parameters, aij and bij , have obvious variation corresponding to different
parameter estimators and the system command input. In order to obtain a robust control
system, a parameter estimator, described in equations (5)–(10), is introduced into the
self-tuning loop of the controller to track the parameter variation, and the stability
property of pole assignment [26] is employed in the controller design for the desired
dynamic performance.

This fourth order vibration system consists of two mass–spring stages coupling through
springs. The fourth order characteristic equation of the desired closed loop poles can be
selected as the product of two second order polynomials:

z4 + a1z3 + a2z2 + a3z+ a4 = (z2 + am1z+ am2)(z2 + am3z+ am4). (11)

The characteristic polynomial matrix used in the control input calculation can be
simplified to

Am(z−1)=$1+ am1z−1 + am2z−2

0
0

1+ am3z−1 + am4z−2% . (12)

The design strategy of this adaptive controller employs the pole assignment concept with
output feedback to obtain the desired system stability and the desired transient response
under a reference input signal.

By taking the Z transformation of equation (3), one obtains

A(z−1)Y(k)=B(z−1)U(k). (13)

The design rule of the adaptive control used in this study is as follows:

T(z−1)Yr(k)−S(z−1)Y(k)=R(z−1)U(k),

R(z−1)= Iz−d +R1z−d−1 + · · ·+Rnrz−nr,

S(z−1)=S0 +S1z−1 + · · ·+Snsz−ns,

T(z−1)=T0 +T1z−1 + · · ·+Tntz−nt, (14)

where Yr(k) and U(k) are the reference position input and control input vectors
respectively, Ri , i=1, . . . , nr, is an m×m coefficient matrix, and Sj , j=0, . . . , ns, and
Tk , k=0, . . . , nt, are m× r coefficient matrices. d is the time delay of the system response.
For this two-input–two-output vibration system, the dimensions of the R, S and T matrices
are 2×2. In order to simplify the controller design procedure and reduce the computing
time, the polynomial matrix T(z−1) is set equal to the polynomial matrix S(z−1). Then the
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Figure 3. The block diagram of this pole assignment self-tuning control system.

pole placement self-tuning controller with unit feedback loop is shown in Figure 3. The
orders of the polynomial matrices R and S are

nr= nb+ d−1 and ns= na−1, (15)

where na and nb are the orders of the polynomial in the system matrices A and B
respectively. For this two-stage mechanical vibration system, R and S are given by

R(z−1)=$ z−d + r11z−d−1

r31z−d + r32z−d−1

r21z−d + r22z−d−1

z−d + r41z−d−1 % , (16)

S(z−1)=$s10 + s11z−1

s30 + s31z−1

s20 + s21z−1

s40 + s41z−1% . (17)

Since the matrix polynomial of the open loop transfer function is

G0(z−1)=A−1(z−1)B(z−1)R−1(z−1)S(z−1), (18)

then the characteristic polynomials of the open and the closed loop systems are

a0(z−1)=det {A(z−1)} · det {R(z−1)}, (19)

ac(z−1)=det {I+A−1(z−1)B(z−1)R−1(z−1)S(z−1)}. (20)

Assuming similar transformation relationship

R−1(z−1)S(z−1)=S	 (z−1)R−1(z−1), (21)

where

ns= ns̃ and S	 (z−1)=S	 0 +S	 1z−1 + · · ·+S	 nsz−ns.

The characteristic polynomial matrix equations of the closed loop system can be derived
as follows:

a0(z−1)ac(z−1)=det {A(z−1)R(z−1)+B(z−1)S	 (z−1)}. (22)
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If the characteristic matrix equation of the desired stable poles of the system is selected
as

Am(z−1)= I+Am1z−1 + · · ·+Amnz−mn, (23)

then equality is obtained:

det {Am(z−1)}=det {A(z−1)R(z−1)+B(z−1)S	 (z−1)}. (24)

Since equation (24) is a set of non-linear high order equations, their solutions are very
difficult to solve. A solution can be obtained using the Diophantine equation:

Am(z−1)=A(z−1)R(z−1)+B(z−1)S	 (z−1). (25)

For the existence of a solution to equation (25), the following condition must hold:

mnEmax {(na+ nr), (nb+ d+ ns̃)}. (26)

By substituting equation (21) into equation (14), the stable inputs of the MIMO system
can be calculated:

U(k)=S	 (z−1)R−1(z−1)[Yr(k)−Y(k)]. (27)

Figure 4. The output responses of sinusoidal waves by using a PID controller. (a) The main mass; (b) the
secondary mass.
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Figure 5. The output response (a) and the control input history (b) of the sinusoidal input tracking control
of the main mass with least-squares identification.

The steps for this pole placement self-tuning control are as follows: (1) estimate the
system parameters matrices A(z−1) and B(z−1) from equations (5)–(10); (2) solve equation
(25) for the polynomial matrices equation R(z−1) and S	 (z−1); (3) calculate the control inputs
from equation (27).

4. EXPERIMENTAL RESULTS AND ANALYSIS

The experimental layout of this active vibration control system consists of a
microcomputer (IBM PC 80486-33) as the CPU of this digital controller, a DC servo motor
actuated mass-spring structure, as in Figure 1, and two eight-bit interface cards with two
sets of A/D and D/A converters to handle I/O communications between the PC and the
motors. The resolution of the DC motor encoder is 400 pulses per revolution. The control
law is written as a C language software program. The sampling frequency is 400 Hz.

The performance of this pole placement self-tuning controller is evaluated by
implementing it in a multi-variable vibration system. Before the experiments are carried
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out, the initial values of P(0), u(0) and the desired closed loop poles must first be selected.
The initial values of the system parameters are selected as one of the off-line identified
results. The desired closed loop poles are designed in the S plane, and then they are
transformed to the Z plane. The damping factor z is selected based upon the integral time
average error (ITAE) rule, to obtain an optimal transient response when the system is
subjected to a step input response. The undamped natural frequency vn is designed
according to computer simulation to adjust the control gains for the desired steady state.
The initial value P(0) is chosen upon the basis of the evaluation of a performance index,
which includes maximum overshoot, rise time and settling time for a step input response.
A larger value of P(0) will cause a more rapid convergence speed and a greater oscillation
during the learning period. According to our study [20], the ideal values are z=0·7,
vn =200 rad/s and P(0)=0·1I. The time delay d is chosen as 2 on the basis of
experimental estimation. In the following, results from two experiments are shown to
evaluate the performance of the proposed controller.

Figure 6. The output response (a) and the control input history (b) of the sinusoidal input tracking control
of the main mass with least-squares identification.
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Figure 7. The output response (a) and the control input history (b) of the sinusoidal input tracking control
of the main mass with modified least-squares identification.

4.1.     

The specified motions of the main and the secondary masses are sinusoidal waves with
15 mm amplitudes. The output responses of the first and the second stages by using a PID
controller are shown in Figures 4(a) and (b) respectively. The deviation from the reference
trajectory at the peaks of the sinusoidal waves is due to the system non-linear and time
varying effect. Hence, it is difficult for the PID controller implemented on this MIMO
vibration system with time varying characteristics to obtain good control performance. In
addition, the gains of the PID controller needs to be adjusted by trial-and-error for each
control case. In order to eliminate the inconvenience and disadvantages of PID controller,
a robust self-tuning adaptive control scheme is introduced in this study. The experimental
results of self-tuning adaptive control with a fixed least squares forgetting factor of
l=0·995 for the sinusoidal inputs are shown in Figures 5 and 6 for the main and the
secondary masses respectively. It can be observed that the deviation at the peaks of the
sinusoidal waves is obviously improved. However, the calculated control input for the
actuating motor is chattering between the upper and the lower bounds (29 V) and the
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system outputs are also chattering. This is the bursting phenomenon mentioned before.
The reason is that the sinusoidal input is a persistent excitation signal with order 2 only,
which is not a sufficiently persistent excitation signal for this fourth order system.

In order to improve the insufficient excitations of input signals, robust adaptive control
strategies have been proposed by previous researchers [21, 22]. Here pole assignment
self-tuning control with an identification scheme shown in equations (5)–(10) is employed
for this multi-variable vibration system. The parameters used in equations (5)–(10) are
C1 =0·001, C2 =0·0, ā=1·0, d=0·0001 and P(0)=P�(0)=0·1I. The output response
and calculated input voltages are shown in Figures 7 and 8 for the main and the secondary
masses respectively. Note that both the bursting phenomenon and the tracking
performance are improved significantly. Since the actuating motor is not only used to
actuate the system for the desired transient and steady state responses but is also utilized
to overcome the inertia force in the gravity field and the tension or compression force of
the coupling spring, high gains are required for ideal system performance. Hence, the
calculated control input voltage has the feature of high frequency chattering. Its chattering

Figure 8. The output response (a) and the control input history (b) of the sinusoidal input tracking control
of the secondary mass with modified least-squares identification.
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Figure 9. (a) The vibration suppression of the main mass. (b) The vibration suppression of the secondary mass
under sinusoidal disturbance.

frequency depends on the gains and sampling frequency instead of the disturbance. If the
order of the system controller is increased, the chattering characteristic does not improve
significantly. However, the computational cost of this pole placement adaptive controller
will be increased exponentially. It is not the correct choice for practical implementation.

4.2.    

A sinusoidal disturbance is introduced into this vibration system by constant speed
driving of the rotating wheel, with an eccentric mass located on each mass. The pole
assignment self-tuning controller is employed to suppress the amplitude of vibration of
each stage. Since this input disturbance is a persistent excitation, both least squares with
a forgetting factor and the algorithm shown in equations (5)–(10) can be employed in the
parameter identification loop. The amplitudes of vibration of the output response for the
system under sinusoidal disturbance with constant frequency are shown in Figure 9. The
solid line exhibits the system response without control action and the dashed line depicts
the response of this system with the pole placement self-tuning control algorithm. The
amplitude of vibration is reduced to about one sixth of its original value. The steady state
behavior for the first 0·6 s is due to the starting delay of the exciting disturbance. The
experimental suppression results for the system under random noise excitation are shown



      121

in Figure 10. It can be observed that the performance is also very good. If the vibration
amplitude needs to be diminished furuther, stochastic adaptive control should be
introduced by incorporating disturbance information into the controller design.

5. CONCLUSIONS

A pole placement self-tuning controller with a modified least squares identification
algorithm is implemented on a two-stage multi-variable mechanical vibration system.
Although the system exhibits non-linear time varying behavior, the experimental results
show that the control performance of the trajectory tracking and the vibration suppression
is satisfactory. The amplitude of vibration is reduced to about one sixth of the original
value.

The desired poles are designed in the S-plane depending on the requirements of the
system transient and steady state performance. The selection of an appropriate parameter
estimator to obtain the best dynamic performance depends on the system input signals.
When the system lacks sufficient excitation, a parameter estimator with less sensitivity is
suitable. If the tracking input signal is a persistent excitation, the on-line estimator requires
good adaptivity and sensitivity to diminish the residual error or model error. In order to

Figure 10. (a) The vibration suppression of the main mass. (b) The vibration suppression of the secondary
mass under random noise excitation.
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avoid the bursting phenomenon, a robust adaptive control with a modified least squares
identification scheme is employed instead of the parameter identification scheme of least
squares with a forgetting factor for the system without persistent excitation so as to
eliminate the windup behavior of the estimated parameters.
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